RESEARCH MEMORANDUM for the U. S. Air Force WIND-TUNNEL INVESTIGATION OF A MODIFIED 1/20-SCALE MODEL OF THE CONVAIR MX-1554 AIRPLANE AT MACH NUMBERS OF 1.41 AND 2.01 By John H. Hilton, Jr., and Edward B. Palazzo Langley Aeronautical Laboratory Langley Field, Va. LINCLASSIFIED | To. | | Page 1 To the tree and the same and and area and the same | | |-----|--------------|--|---| | Ву | authority of | TPA # 6.3 Date 12/3/6/ | 1 | This material contains information affecting the Hational Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON AUG 24 1959 CLASSIFIED NACA RM SL53G30 ではないのは、これには、これでは、これできることできないとのできるというできないというできないというできないというできないというできないというできないというできないというできないというできないという ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS RESEARCH MEMORANDUM for the U. S. Air Force WIND-TUNNEL INVESTIGATION OF A MODIFIED 1/20-SCALE MODEL OF THE CONVAIR MX-1554 AIRPLANE AT MACH NUMBERS OF 1.41 AND 2.01 By John H. Hilton, Jr., and Edward B. Palazzo #### SUMMARY An investigation of a 1/20-scale model of the Convair MX-1554 airplane has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to evaluate the effects of extending the length of the fuselage afterbody (in accordance with area-rule considerations) and to provide longitudinal and lateral stability and control data. The tests were made at Mach numbers of 1.41 and 2.01 over a Reynolds number range of 1.13×10^6 to 8.83×10^6 . The results of the tests indicate that extension of the fuselage afterbody length caused little change in the minimum longitudinal force coefficient and in the drag due to lift. Elongating the afterbody resulted in slight increases in the static longitudinal stability, static directional stability, and side force and had negligible effect on the other parameters. The variation of trim lift coefficient with elevon deflection for the basic configuration decreased from -0.011 at M=1.41 to -0.007 at M=2.01. The data indicated a value of -0.3 for $\binom{\beta_{\delta_R}}{C_n=0}$ at M = 1.41, $\alpha=4^{\circ}$. The directional stability of the basic configuration decreases with increasing Mach number and is approaching zero near M=2.0, $\alpha=4^{\circ}$. Reynolds number effects were small; however, some increase in $\Delta C_D / C_L^{\ 2}$ was indicated at low Reynolds numbers for both test Mach numbers. #### INTRODUCTION An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of the Convair MX-1554 aircraft configuration. The present tests of the MX-1554 constitute the second phase of a specific research project conducted at the request of the United States Air Force. The results of the first phase of this research project (presented in ref. 1) were concerned with the aerodynamic characteristics of the configuration at Mach numbers of 1.61 and 2.01. The present tests were conducted at M = 1.41 and M = 2.01 to provide additional data for the MX-1554 design and to determine the effects of extending the length of the fuselage afterbody. The changes in the afterbody shape were proposed (on the basis of Langley 8-foot transonic tunnel tests) as a means of reducing the transonic minimum drag rise and were dictated by the area-rule concept. The basic model (short afterbody) of the present tests had a different nose and a different canopy compared to the Phase I configuration (ref. 1). #### COEFFICIENTS AND SYMBOLS The data are referred to the stability-axes system (fig. 1) with the reference center of gravity at 27.5 percent of the wing mean aerodynamic chord. The coefficients and symbols are defined as follows: $^{ m C_L}$ lift coefficient, -Z/qS C_X longitudinal-force coefficient, X/qS C_D drag coefficient, <u>Drag</u> qS ${\tt C_{{\tt D_{min}}}} \qquad \qquad {\tt minimum \ drag \ coefficient}$ $\Delta C_D = C_D - C_{D_{min}}$ C_m pitching-moment coefficient, M'/qSc $C_{ m Y}$ lateral-force coefficient, Y/qS C_n yawing-moment coefficient, N/qSb | Cl | rolling-moment coefficient, L/qSb | |---|--| | x | force along X-axis, 1b | | Y | force along Y-axis, lb | | Z | force along Z-axis, 1b | | L | moment about X-axis, lb-ft | | M ' | moment about Y-axis, lb-ft | | N | moment about Z-axis, lb-ft | | đ | free-stream dynamic pressure, lb/sq ft | | R | Reynolds number | | S | total wing area, sq ft | | Ъ | wing span, ft | | č | wing mean aerodynamic chord, ft | | С | local wing chord, ft | | М | Mach number | | P_{O} | tunnel stagnation pressure, lb/sq in | | a | angle of attack of fuselage center line, deg | | β | angle of sideslip, deg | | δ_{e} | elevon deflection angle, deg | | $\delta_{ m R}$ | rudder deflection angle, deg | | $^{\mathrm{C}_{\mathrm{m}_{\mathrm{C_L}}}}$ | lift-curve slope | | $\mathrm{c_{^mC_L}}$ | longitudinal-stability parameter, rate of change of pitching-moment coefficient with lift coefficient, $\partial c_m/\partial c_L$ | Carre Halling way and all the way we $\mathtt{C}_{\mathtt{n}_{\beta}}$ directional-stability parameter, rate of change of yawing-moment coefficient with angle of sideslip, $\partial C^{n}/\partial B$ \mathtt{c}_{ι_β} effective-dihedral parameter, rate of change of rolling-moment coefficient with angle of sideslip, 3C₁/3β $\mathtt{C}_{Y_{\beta}}$ lateral-force parameter, rate of change of lateralforce coefficient with angle of sideslip, rate of change of lift coefficient with elevon deflection at $C_m = 0$, $\partial C_L / \partial \delta_e$ rate of change of angle of attack with elevon deflection at $C_{\rm m} = 0$, $\partial \alpha / \partial \delta_{\rm e}$ rate of change of angle of sideslip with rudder deflection at $C_n = 0$, $\partial \beta / \partial \delta_R$ #### Configuration symbols: W wing В body c_1 blunt-canopy, inclined 30° C_7 vee-canopy P nose probe Nz blunt, interim nose shape N_{\downarrow} pointed, final nose shape VT60 vertical tail, 60° sweptback leading edge, 5° sweptforward trailing edge VT60-1 vertical tail, 60° sweptback leading edge, 0° sweptforward trailing edge The second of th D_{o} inlets open $\mathrm{D}_{\mathbf{F}}$ inlets closed with faired plugs $\mathrm{D_{F}}^{\mathrm{O}}$ inlets open and closed F chordwise wing fences on F_{w}^{O} chordwise wing fences both on and off #### MODEL AND APPARATUS The tests were conducted in the Langley 4- by 4-foot supersonic pressure tunnel at M = 1.41 and 2.01. The 1/20-scale model of the Convair MX-1554 airplane used in this investigation is shown in figure 2. Details of the model (which was supplied by the contractor) are given in table I. The basic configuration for the present (designated herein as Phase II) tests had a 60° delta wing mounted on the short fuselage in a mid-low position and had NACA 0004-65 (mod.) airfoil sections. The vertical tail was similar in plan form and section to the wing semispan. The model was equipped with wing trailing-edge flaps and a rudder. The configuration had chordwise wing fences and a probe projecting from the nose. Twin ram-type inlets were located well forward on the sides of the fuselage, but for the present tests (Phase II) the inlets were closed by means of faired plugs. The blunt interim nose N₃ and the blunt 30° optical flat canopy C_1 tested as part of the Phase I basic configuration were replaced by a pointed nose shape N_{\parallel} and a sharp-leading-edge vee-canopy C_7 for the Phase II tests. Three different afterbodies (fig. 3) were tested: a short symmetrical afterbody (which was part of the basic configuration); an elongated symmetrical afterbody;
and an elongated upswept afterbody, designed to provide ground clearance. The latter two afterbodies, which have base areas approximately the same as the base area of the short symmetrical afterbody, were designed to provide a more gradual decrease in the cross-sectional area distribution of the complete configuration. Figure 4 presents a series of photographs showing the complete configuration with the different afterbodies installed. The cross-sectional area distribution of the complete model with the various afterbodies is given in figure 5. A body of revolution (fig. 6) having the same cross-sectional area distribution as the complete basic configuration (WBPFN $_{\rm L}$ C $_{\rm T}$ VT $_{\rm 60}$ D $_{\rm F}$ + Short symmetrical afterbody) was tested to provide additional data for area-rule consideration. COLUMN TO THE PARTY OF PART Forces and moments were measured by means of a six-component internal strain-gage balance and indicating system. #### TESTS The model was mounted on a 4° bent sting which enabled pitch tests to be made through an angle-of-attack range from -4° to 12° at $\beta=0^{\circ}$ and sideslip tests to be conducted through a range of sideslip angles from -4° to 12° at 0° and 4° angle of attack. The various conditions for the tests were: | Mach
number | Reynolds number, based on M.A.C. | Stagnation pressure, lb/sq in. abs. | Stagnation temperature, $^{\circ}_{ m F}$ | |----------------|--|--|---| | 1.41 | 1.37 × 10 ⁶
3.08
4.80
7.02
8.83 | 4
9
1 ¹ 4
21
27 | 100
100
100
110
120 | | 2.01 | 1.13
2.55
3.96
5.83
7.27 | 4* 9 1 ⁴ 21 27 | 100
100
100
108
120 | ^{*}For this low stagnation pressure, the test section Mach number was approximately 1.97. The stagnation dew point for the test was less than -25° F. #### CORRECTIONS AND ACCURACY The angles of attack and sideslip have been corrected for deflections of the balance and sting caused by the aerodynamic loads and are estimated to be accurate within $\pm 0.2^{\circ}$. The estimated accuracy of the control-deflection settings was $\pm 0.1^{\circ}$. No corrections were made for Mach number gradient and flow angularity. It should be noted that center-line calibration measurements of the M = 2.0 nozzle indicate that the free-stream Mach number drops to 1.97 at p_0 = 4 lb/sq in. abs. Accordingly, the low Reynolds number data have been computed for a free-stream M=1.97. Inasmuch as this change in M is small, the data are presented on the M=2.01 plots. The variations of Mach number and flow angularity are: | M = 1.41 | M = 2 | 2.01 | |--------------------|---|--| | po, lb/sq in. abs. | p _o , lb/sq | in. abs. | | 4, 9, 14, 21, 27 | 4 | 9, 14, 21, 27 | | ±0.01 | 1.97 ± 0.015 | ±0.01 | | +0.0
-0.25 | ±0.05 | ±0.05 | | +0.15
-0.25 | ±0.1 | ±0.05 | | | p _o , lb/sq in. abs. 4, 9, 14, 21, 27 ±0.01 +0.0 -0.25 +0.15 | p ₀ , lb/sq in. abs. p ₀ , lb/sq
4, 9, 14, 21, 27 4
±0.01 1.97 ± 0.015
+0.0 ±0.05
+0.15 ±0.1 | The estimated errors in the coefficients are as follows: | $\mathtt{c}_{\mathtt{L}}$ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ±0.005 | |---------------------------|-----------------| ±0.001 | | 111 | ±0.002 | | $\mathtt{C}_{\mathbf{Y}}$ | | | • | • | • | • | | • | • | | • | • | • | • | • | • | • | • | • | | • | • | • | | • | • | • | • | • | • | • | ±0.003 | | c_n | | • | | | | | | • | | • | • | | | • | • | • | • | • | | | | • | • | • | | | | • | • | | 1 | <u>t</u> o.0002 | | cı | | • | • | | • | • | | • | • | • | • | | | • | • | • | • | • | | | | • | | | | | • | • | • | • | 4 | to.0002 | Base-pressure measurements were made for all tests and the longitudinal-force coefficients were corrected to correspond to a base pressure equal to free-stream static pressure. It is believed that sting interference effects on the upswept afterbody are small and that the changes in the upswept afterbody (fig. 3) to provide sting clearance had little effect on the aerodynamic characteristics. #### PRESENTATION OF RESULTS The results of the investigation are presented in figures 7 to 16 as follows: ----- ### Data presented | Longitudinal characteristics | Figure | |---|--------| | Pitch tests, with various elevon deflections, of the complete configuration with the short symmetrical afterbody, the elongated symmetrical afterbody, and the elongated unswept afterbody. | 7 | | (a) $M = 1.41$; $R = 4.80 \times 10^6$
(b) $M = 2.01$; $R = 3.96 \times 10^6$ | | | Pitch tests of the complete basic configuration (short symmetrical afterbody) at various Reynolds numbers. | 8 | | (a) $M = 1.41$
(b) $M = 2.01$ | | | Curves of ΔC_D versus C_L^2 for the various test configurations at M = 1.41 and 2.01, δ_e = 0°. Variable R data are presented for the basic configuration. | 9 | | Pitch tests of the complete basic configuration (short symmetrical afterbody), the wing-body combination, and the "equivalent-area" distribution body of revolution. $M = 1.41$; $R = 4.8 \times 10^6$. | 10 | | Lateral characteristics | | | Sideslip tests at $\alpha=0^{\circ}$ of the complete basic configuration (short symmetrical afterbody) with and without the vertical tail. | 11 | | (a) $M = 1.41$; $R = 4.80 \times 10^6$
(b) $M = 2.01$; $R = 3.96 \times 10^6$ | | | Sideslip tests at $\alpha=4^{\circ}$, $\delta_R=0^{\circ}$, of the complete configuration with the short symmetrical afterbody, the elongated symmetrical afterbody, and the elongated upswept afterbody. | 12 | | Sideslip test at $\alpha=4^{\circ}$, $\delta_{R}=-15^{\circ}$, of the complete configuration with the short symmetrical afterbody. | | (a) M = 1.41; $R = 4.80 \times 10^6$ (b) M = 2.01; $R = 3.96 \times 10^6$ Sideslip tests at $\alpha=4^{\circ}$ of the complete basic configuration (short symmetrical afterbody) over a Reynolds number range of 1.13×10^{6} to 7.27×10^{6} . $\delta_{R}=0^{\circ}$; M=2.01. #### Variation with Mach number Longitudinal parameters through the supersonic Mach number range. $\beta = 0^{\circ}$. Longitudinal control parameters through the supersonic Mach number range. $\beta = 0^{\circ}$. Lateral parameters through the supersonic Mach number range. (a) $\alpha = 0^{\circ}$ (b) $\alpha = 1^{\circ}$ The longitudinal parameters $C_{L_{\alpha}}$, $C_{m_{C_L}}$, $C_{D_{min}}$, $\left(c_{m\delta_e}\right)_{\alpha=0^\circ}$, $\left(c_{L\delta_e}\right)_{trim}$, and $\left(\alpha_{\delta_e}\right)_{trim}$ are presented in table II and the lateral parameters $c_{Y_{\beta}}$, $c_{l_{\beta}}$, $c_{n_{\beta}}$, and $\left(\beta_{\delta_R}\right)_{C_n=0}$ are given in table III. Table IV is a compilation of the values of c_L , c_m , c_X , c_Y , c_l , and c_n measured for the various test configurations and conditions. #### DISCUSSION #### Longitudinal Characteristics Basic. Changing the nose and canopy shapes of the basic configurations from those of reference 1 had little effect on the aerodynamic characteristics; however, some reduction in drag was noted. Afterbody extensions. Extending the afterbody length of the complete configuration (fig. 7) caused little change in the minimum longitudinal-force coefficient and in the lift-curve slope at both test Mach numbers. The static margin of the extended afterbody configurations was approximately 0.01 higher than the values of C_{mCL} for the basic configuration at M = 1.41 and 2.01. The drag due to lift (fig. 9) showed little or no change with afterbody extension at both test Mach numbers. discussion of these data.) Controls.- Extending the afterbody length improved the elevon effectiveness at M = 1.41 but had no effect on $C_{m\delta_e}$ at M = 2.01 (table II). The variation of the trim lift coefficient with elevon deflection for the basic configuration was -0.011 and -0.007 at M = 1.41 and 2.01, respectively. The corresponding values of $(\alpha_{\delta_e})_{trim}$ were -0.34 and -0.29. Deflection of the elevons -10° increased C_{Xmin} from -0.022 to -0.028 at M = 1.41 and from -0.020 to -0.023 at M = 2.01; the trim drag coefficient for δ_e = -10° (fig. 7) was 0.032 at M = 1.41 and 0.024 at M = 2.01. #### Lateral Characteristics Basic. The lateral characteristics of the basic configuration were only slightly affected by changing the angle of attack from 0° to 4° (figs. 11 and 12) except at M = 1.41, where $C_{l_{\beta}}$ increased from -0.0006 to -0.0012. At 4° angle of attack, M = 2.01, the changes in the lateral parameters were negligible as the Reynolds number was increased above the nominal test value of 3.96 × 10⁶ (fig. 13). A small decrease in $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ was indicated at R = 1.13 × 10⁶. Afterbody extensions.— The effects of the different afterbodies on the lateral characteristics of the complete model at $\alpha=4^{\circ}$ are presented in figure 12 for M = 1.41 and 2.01. Increasing the afterbody length improved the directional stability and increased $C_{Y_{\beta}}$ for the complete configuration at both test Mach numbers without affecting $C_{1_{\beta}}$ in
the range $-4^{\circ}<\beta<+4^{\circ}$. The parameters $C_{n_{\beta}}$, $C_{Y_{\beta}}$, and $C_{1_{\beta}}$ decreased with increasing Mach number for all configurations (table III). Controls - Rudder deflections at α = 4° (M = 1.41 and 2.01) caused little change in $C_{Y_{\beta}}$, $C_{l_{\beta}}$, and $C_{n_{\beta}}$ (fig. 12). A value ## RESEARCH MEMORANDUM for the U. S. Air Force WIND-TUNNEL INVESTIGATION OF A MODIFIED 1/20-SCALE MODEL OF THE CONVAIR MX-1554 AIRPLANE AT MACH NUMBERS OF 1.41 AND 2.01 By John H. Hilton, Jr., and Edward B. Palazzo Langley Aeronautical Laboratory Langley Field, Va. **IINCLASSIFIED** | TO | | | | the set has been self and her | |----|--------------|-----|-----|---| | Ву | authority of | TFA | #63 | Date 12/3/6/ | This material contains information affecting the Hational Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON AUG 24 1953 CLASSIFIED NACA RM SL53G30 ではないのは、これには、これでは、これできることできないとのできるというできないというできないというできないというできないというできないというできないというできないというできないというできないという ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS RESEARCH MEMORANDUM for the U. S. Air Force WIND-TUNNEL INVESTIGATION OF A MODIFIED 1/20-SCALE MODEL OF THE CONVAIR MX-1554 AIRPLANE AT MACH NUMBERS OF 1.41 AND 2.01 By John H. Hilton, Jr., and Edward B. Palazzo #### SUMMARY An investigation of a 1/20-scale model of the Convair MX-1554 airplane has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to evaluate the effects of extending the length of the fuselage afterbody (in accordance with area-rule considerations) and to provide longitudinal and lateral stability and control data. The tests were made at Mach numbers of 1.41 and 2.01 over a Reynolds number range of 1.13×10^6 to 8.83×10^6 . The results of the tests indicate that extension of the fuselage afterbody length caused little change in the minimum longitudinal force coefficient and in the drag due to lift. Elongating the afterbody resulted in slight increases in the static longitudinal stability, static directional stability, and side force and had negligible effect on the other parameters. The variation of trim lift coefficient with elevon deflection for the basic configuration decreased from -0.011 at M=1.41 to -0.007 at M=2.01. The data indicated a value of -0.3 for $\binom{\beta_{\delta_R}}{C_n=0}$ at M = 1.41, $\alpha=4^{\circ}$. The directional stability of the basic configuration decreases with increasing Mach number and is approaching zero near M=2.0, $\alpha=4^{\circ}$. Reynolds number effects were small; however, some increase in $\Delta C_D \! \! \left/ C_L^{\ 2} \right.$ was indicated at low Reynolds numbers for both test Mach numbers. #### INTRODUCTION An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of the Convair MX-1554 aircraft configuration. The present tests of the MX-1554 constitute the second phase of a specific research project conducted at the request of the United States Air Force. The results of the first phase of this research project (presented in ref. 1) were concerned with the aerodynamic characteristics of the configuration at Mach numbers of 1.61 and 2.01. The present tests were conducted at M = 1.41 and M = 2.01 to provide additional data for the MX-1554 design and to determine the effects of extending the length of the fuselage afterbody. The changes in the afterbody shape were proposed (on the basis of Langley 8-foot transonic tunnel tests) as a means of reducing the transonic minimum drag rise and were dictated by the area-rule concept. The basic model (short afterbody) of the present tests had a different nose and a different canopy compared to the Phase I configuration (ref. 1). #### COEFFICIENTS AND SYMBOLS The data are referred to the stability-axes system (fig. 1) with the reference center of gravity at 27.5 percent of the wing mean aerodynamic chord. The coefficients and symbols are defined as follows: $^{\mathrm{C}}_{\mathrm{L}}$ lift coefficient, -Z/qS CX longitudinal-force coefficient, X/qS ${ m C_D}$ drag coefficient, ${ m Drag}\over { m qS}$ ${\tt C_{{\tt D_{min}}}} \qquad \qquad {\tt minimum \ drag \ coefficient}$ $\Delta C_D = C_D - C_{D_{min}}$ C_m pitching-moment coefficient, M'/qSc $C_{ m Y}$ lateral-force coefficient, Y/qS C_n yawing-moment coefficient, N/qSb $\delta_{\!R}$ $\mathbf{c}_{\mathbf{m}\mathbf{C}^{\mathbf{L}}}$ | ? | | | |---------------------------------------|--------------|--| | 2 00
2 00
2000 | cı | rolling-moment coefficient, L/qSb | | :• ` • | x | force along X-axis, lb | | ••• | Y | force along Y-axis, lb | | | Z | force along Z-axis, lb | | er
S | L | moment about X-axis, lb-ft | | | M' | moment about Y-axis, lb-ft | | | N | moment about Z-axis, lb-ft | | • | q | free-stream dynamic pressure, lb/sq ft | | 4
1 | R | Reynolds number | | | S | total wing area, sq ft | | | Ъ | wing span, ft | | | ē | wing mean aerodynamic chord, ft | | | с | local wing chord, ft | | · · · · · · · · · · · · · · · · · · · | М | Mach number | | ∜
⊈
∰ | P_{O} | tunnel stagnation pressure, lb/sq in | | | a | angle of attack of fuselage center line, deg | | | β | angle of sideslip, deg | | | δ_{e} | elevon deflection angle, deg | longitudinal-stability parameter, rate of change of pitching-moment coefficient with lift coefficient, $\delta c_m/\delta c_L$ Wand Remains and Miles was rudder deflection angle, deg lift-curve slope $\mathtt{C}_{\mathtt{n}_{\beta}}$ directional-stability parameter, rate of change of yawing-moment coefficient with angle of sideslip, $\partial C^{n}/\partial B$ \mathtt{c}_{ι_β} effective-dihedral parameter, rate of change of rolling-moment coefficient with angle of sideslip, 3C₁/3β $\mathtt{C}_{Y_{\beta}}$ lateral-force parameter, rate of change of lateralforce coefficient with angle of sideslip, rate of change of lift coefficient with elevon deflection at $C_m = 0$, $\partial C_L / \partial \delta_e$ rate of change of angle of attack with elevon deflection at $C_{\rm m} = 0$, $\partial \alpha / \partial \delta_{\rm e}$ rate of change of angle of sideslip with rudder deflection at $C_n = 0$, $\partial \beta / \partial \delta_R$ #### Configuration symbols: W wing В body c_1 blunt-canopy, inclined 30° C_7 vee-canopy P nose probe Nz blunt, interim nose shape N_{\downarrow} pointed, final nose shape VT60 vertical tail, 60° sweptback leading edge, 5° sweptforward trailing edge VT60-1 vertical tail, 60° sweptback leading edge, 0° sweptforward trailing edge The second of th D_{o} inlets open $\mathrm{D}_{\mathbf{F}}$ inlets closed with faired plugs $\mathrm{D_F}^{\mathrm{O}}$ inlets open and closed F chordwise wing fences on F_{w}^{O} chordwise wing fences both on and off #### MODEL AND APPARATUS The tests were conducted in the Langley 4- by 4-foot supersonic pressure tunnel at M = 1.41 and 2.01. The 1/20-scale model of the Convair MX-1554 airplane used in this investigation is shown in figure 2. Details of the model (which was supplied by the contractor) are given in table I. The basic configuration for the present (designated herein as Phase II) tests had a 60° delta wing mounted on the short fuselage in a mid-low position and had NACA 0004-65 (mod.) airfoil sections. The vertical tail was similar in plan form and section to the wing semispan. The model was equipped with wing trailing-edge flaps and a rudder. The configuration had chordwise wing fences and a probe projecting from the nose. Twin ram-type inlets were located well forward on the sides of the fuselage, but for the present tests (Phase II) the inlets were closed by
means of faired plugs. The blunt interim nose N₃ and the blunt 30° optical flat canopy C_1 tested as part of the Phase I basic configuration were replaced by a pointed nose shape N_{\parallel} and a sharp-leading-edge vee-canopy C_7 for the Phase II tests. Three different afterbodies (fig. 3) were tested: a short symmetrical afterbody (which was part of the basic configuration); an elongated symmetrical afterbody; and an elongated upswept afterbody, designed to provide ground clearance. The latter two afterbodies, which have base areas approximately the same as the base area of the short symmetrical afterbody, were designed to provide a more gradual decrease in the cross-sectional area distribution of the complete configuration. Figure 4 presents a series of photographs showing the complete configuration with the different afterbodies installed. The cross-sectional area distribution of the complete model with the various afterbodies is given in figure 5. A body of revolution (fig. 6) having the same cross-sectional area distribution as the complete basic configuration (WBPFN $_{\rm L}$ C $_{\rm T}$ VT $_{\rm 60}$ D $_{\rm F}$ + Short symmetrical afterbody) was tested to provide additional data for area-rule consideration. COLUMN TO THE REAL PROPERTY. Forces and moments were measured by means of a six-component internal strain-gage balance and indicating system. #### TESTS The model was mounted on a 4° bent sting which enabled pitch tests to be made through an angle-of-attack range from -4° to 12° at $\beta=0^{\circ}$ and sideslip tests to be conducted through a range of sideslip angles from -4° to 12° at 0° and 4° angle of attack. The various conditions for the tests were: | Mach
number | Reynolds number, based on M.A.C. | Stagnation pressure, lb/sq in. abs. | Stagnation temperature, $^{\circ}_{ m F}$ | |----------------|----------------------------------|-------------------------------------|---| | 1.41 | 1.37 × 10 ⁶ | 4 | 100 | | | 3.08 | 9 | 100 | | | 4.80 | 1 ¹ 4 | 100 | | | 7.02 | 21 | 110 | | | 8.83 | 27 | 120 | | 2.01 | 1.13 | 4 * | 100 | | | 2.55 | 9 | 100 | | | 3.96 | 1 ¹ 4 | 100 | | | 5.83 | 21 | 108 | | | 7.27 | 27 | 120 | ^{*}For this low stagnation pressure, the test section Mach number was approximately 1.97. The stagnation dew point for the test was less than -25° F. #### CORRECTIONS AND ACCURACY The angles of attack and sideslip have been corrected for deflections of the balance and sting caused by the aerodynamic loads and are estimated to be accurate within $\pm 0.2^{\circ}$. The estimated accuracy of the control-deflection settings was $\pm 0.1^{\circ}$. No corrections were made for Mach number gradient and flow angularity. It should be noted that center-line calibration measurements of the M = 2.0 nozzle indicate that the free-stream Mach number drops to 1.97 at p_0 = 4 lb/sq in. abs. Accordingly, the low Reynolds number data have been computed for a free-stream M=1.97. Inasmuch as this change in M is small, the data are presented on the M=2.01 plots. The variations of Mach number and flow angularity are: | M = 1.41 | M = 2 | 2.01 | |--------------------|---|--| | po, lb/sq in. abs. | p _o , lb/sq | in. abs. | | 4, 9, 14, 21, 27 | 4 | 9, 14, 21, 27 | | ±0.01 | 1.97 ± 0.015 | ±0.01 | | +0.0
-0.25 | ±0.05 | ±0.05 | | +0.15
-0.25 | ±0.1 | ±0.05 | | | p _o , lb/sq in. abs. 4, 9, 14, 21, 27 ±0.01 +0.0 -0.25 +0.15 | p ₀ , lb/sq in. abs. p ₀ , lb/sq
4, 9, 14, 21, 27 4
±0.01 1.97 ± 0.015
+0.0 ±0.05
+0.15 ±0.1 | The estimated errors in the coefficients are as follows: | $\mathtt{c}_{\mathtt{L}}$ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ±0.005 | |---------------------------|-----------------| ±0.001 | | 111 | ±0.002 | | $\mathtt{C}_{\mathbf{Y}}$ | | | • | • | • | • | | • | • | | • | • | • | • | • | • | • | • | • | | • | • | • | | • | • | • | • | • | • | • | ±0.003 | | c_n | | • | | | | | | • | | • | • | | | • | • | • | • | • | | | | • | • | • | | | | • | • | | 1 | <u>t</u> o.0002 | | cı | | | • | | • | • | | • | • | • | • | | | • | • | • | • | • | | | | • | | | | | • | • | • | • | 4 | to.0002 | Base-pressure measurements were made for all tests and the longitudinal-force coefficients were corrected to correspond to a base pressure equal to free-stream static pressure. It is believed that sting interference effects on the upswept afterbody are small and that the changes in the upswept afterbody (fig. 3) to provide sting clearance had little effect on the aerodynamic characteristics. #### PRESENTATION OF RESULTS The results of the investigation are presented in figures 7 to 16 as follows: ----- ### Data presented | Longitudinal characteristics | Figure | |---|--------| | Pitch tests, with various elevon deflections, of the complete configuration with the short symmetrical afterbody, the elongated symmetrical afterbody, and the elongated unswept afterbody. | 7 | | (a) $M = 1.41$; $R = 4.80 \times 10^6$
(b) $M = 2.01$; $R = 3.96 \times 10^6$ | | | Pitch tests of the complete basic configuration (short symmetrical afterbody) at various Reynolds numbers. | 8 | | (a) $M = 1.41$
(b) $M = 2.01$ | | | Curves of ΔC_D versus ${C_L}^2$ for the various test configurations at M = 1.41 and 2.01, δ_e = 0°. Variable R data are presented for the basic configuration. | 9 | | Pitch tests of the complete basic configuration (short symmetrical afterbody), the wing-body combination, and the "equivalent-area" distribution body of revolution. $M = 1.41$; $R = 4.8 \times 10^6$. | 10 | | Lateral characteristics | | | Sideslip tests at $\alpha=0^{\circ}$ of the complete basic configuration (short symmetrical afterbody) with and without the vertical tail. | 11 | | (a) $M = 1.41$; $R = 4.80 \times 10^6$
(b) $M = 2.01$; $R = 3.96 \times 10^6$ | | | Sideslip tests at $\alpha = 4^{\circ}$, $\delta_R = 0^{\circ}$, of the complete configuration with the short symmetrical afterbody, the elongated symmetrical afterbody, and the elongated upswept afterbody. | 12 | | Sideslip test at $\alpha=4^{\circ}$, $\delta_{R}=-15^{\circ}$, of the complete configuration with the short symmetrical afterbody. | | | () | | (a) M = 1.41; $R = 4.80 \times 10^6$ (b) M = 2.01; $R = 3.96 \times 10^6$ (b) $$M = 2.01$$; $R = 3.96 \times 10^6$ Sideslip tests at $\alpha=4^{\circ}$ of the complete basic configuration (short symmetrical afterbody) over a Reynolds number range of 1.13×10^{6} to 7.27×10^{6} . $\delta_R=0^{\circ}$; M=2.01. #### Variation with Mach number Longitudinal parameters through the supersonic Mach number range. $\beta = 0^{\circ}$. Longitudinal control parameters through the supersonic Mach number range. $\beta = 0^{\circ}$. Lateral parameters through the supersonic Mach number range. (a) $\alpha = 0^{\circ}$ (b) $\alpha = 4^{\circ}$ The longitudinal parameters $C_{L_{\alpha}}$, $C_{m_{C_L}}$, $C_{D_{min}}$, $\left(c_{m\delta_e}\right)_{\alpha=0^\circ}$, $\left(c_{L\delta_e}\right)_{trim}$, and $\left(\alpha_{\delta_e}\right)_{trim}$ are presented in table II and the lateral parameters $c_{Y_{\beta}}$, $c_{l_{\beta}}$, $c_{n_{\beta}}$, and $\left(\beta_{\delta_R}\right)_{C_n=0}$ are given in table III. Table IV is a compilation of the values of c_L , c_m , c_X , c_Y , c_l , and c_n measured for the various test configurations and conditions. #### DISCUSSION #### Longitudinal Characteristics Basic. Changing the nose and canopy shapes of the basic configurations from those of reference 1 had little effect on the aerodynamic characteristics; however, some reduction in drag was noted. Afterbody extensions.— Extending the afterbody length of the complete configuration (fig. 7) caused little change in the minimum longitudinal-force coefficient and in the lift-curve slope at both test Mach numbers. The static margin of the extended afterbody configurations was approximately 0.01 higher than the values of C_{mCL} for the basic configuration at M = 1.41 and 2.01. The drag due to lift (fig. 9) showed little or no change with afterbody extension at both test Mach numbers. Reynolds number effects.— The basic configuration was tested over a range of Reynolds numbers at M = 1.41 and 2.01 (figs. 8 and 9). Except for a small increase in the drag due to lift at the lowest Reynolds numbers, the Reynolds number effects were negligible. Values of $1/C_{L_{CL}}$ (at the higher Reynolds numbers) are higher than $\Delta C_D/C_L^2$ at M = 1.41 and about the same as $\Delta C_D/C_L^2$ at M = 2.01. (See ref. 4 for further discussion of these data.) Controls.- Extending the afterbody length improved the elevon effectiveness at M = 1.41 but had no effect on $C_{m\delta_e}$ at M = 2.01 (table II). The variation of the trim lift coefficient with elevon deflection for the basic configuration was -0.011 and -0.007 at M = 1.41 and 2.01, respectively. The corresponding values of $(\alpha_{\delta_e})_{trim}$ were -0.34 and -0.29. Deflection of the elevons -10° increased C_{Xmin} from -0.022 to -0.028 at M = 1.41 and from -0.020 to -0.023 at M = 2.01; the trim drag coefficient for δ_e = -10° (fig. 7) was 0.032 at M =
1.41 and 0.024 at M = 2.01. #### Lateral Characteristics Basic. The lateral characteristics of the basic configuration were only slightly affected by changing the angle of attack from 0° to 4° (figs. 11 and 12) except at M = 1.41, where $C_{l_{\beta}}$ increased from -0.0006 to -0.0012. At 4° angle of attack, M = 2.01, the changes in the lateral parameters were negligible as the Reynolds number was increased above the nominal test value of 3.96 × 10⁶ (fig. 13). A small decrease in $C_{Y_{\beta}}$ and $C_{n_{\beta}}$ was indicated at R = 1.13 × 10⁶. Afterbody extensions.— The effects of the different afterbodies on the lateral characteristics of the complete model at $\alpha=4^{\circ}$ are presented in figure 12 for M = 1.41 and 2.01. Increasing the afterbody length improved the directional stability and increased $C_{Y_{\beta}}$ for the complete configuration at both test Mach numbers without affecting $C_{1_{\beta}}$ in the range $-4^{\circ}<\beta<+4^{\circ}$. The parameters $C_{n_{\beta}}$, $C_{Y_{\beta}}$, and $C_{1_{\beta}}$ decreased with increasing Mach number for all configurations (table III). Controls - Rudder deflections at α = 4° (M = 1.41 and 2.01) caused little change in $C_{Y_{\beta}}$, $C_{l_{\beta}}$, and $C_{n_{\beta}}$ (fig. 12). A value C TEDENTIES of $(\beta \delta_R)_{C_n=0}=$ -0.3 was measured at M = 1.41. At M = 2.01, however, no value of $(\beta \delta_R)_{C_n=0}$ could be measured with $\delta_R=$ -15 $^{\circ}$ because of the low value of $C_{n_{\beta}}$. Variation of Aerodynamic Parameters With Mach Number Figures 14 to 16 are presented to show the correlation and variation of the longitudinal and lateral parameters with Mach number for the Convair MX-1554 configuration. In general, the correlation of the data between the various test facilities is good except for some scatter in the drag results. There is some question, however, whether certain of these drag data are corrected for internal flow and base drag (fig. 14). The 4- by 4-foot supersonic pressure tunnel value of $C_{\mbox{Dmin}}$ at M = 2.01 was lower for the second phase tests than for the Phase I (ref. 1) tests. This reduction is believed due to the changes in the basic canopy and nose shapes. The values of the "tail-on" effective dihedral parameter from reference 3 are lower than the $C_{l_{\beta}}$ values from the other facilities at M = 1.22 and 1.56 (fig. 16(a), α = 0°). Figure 16(b) presents the values of the lateral parameters at $\alpha=4^{\rm O}$ obtained from tests of the Convair MX-1554 in the 4- by 4-foot supersonic pressure tunnel at M = 1.41, 1.61, and 2.01. The change in the directional stability (between the Phase I and Phase II tests) indicated by the individual fairing of the $C_{\rm n_{\beta}}$ curves versus M is within the experimental accuracy but may be due in part to changes in the nose shape, canopy shape, accuracy but may be due in part to changes in the nose shape, canopy shape, and inlet openings of the basic configuration between the Phase I and Phase II tests. In any case, $C_{n_{\beta}}$ is approaching 0 near M=2.0 (fig. 16(b)). #### CONCLUDING REMARKS The results of the present tests of the Convair MX-1554 at M=1.41 and 2.01 indicate that extension of the fuselage afterbody length caused little change in the minimum longitudinal-force coefficient and in the drag due to lift. Elongating the afterbody resulted in slight increases in the static longitudinal stability, static lateral stability, and side force and had negligible effect on the other parameters. #### CAPARATE PROPERTY The variation of trim lift coefficient with elevon deflection for the basic configuration decreased from -0.011 at M=1.41 to -0.007 at M=2.01. The data indicated a value of -0.3 for $\left(\beta_{\delta R}\right)_{Cn}=0$ at M = 1.41, α = 4°. The directional stability of the basic configuration decreases with increasing Mach number and is approaching zero near M = 2.0, α = 4°. Reynolds number effects were small; however, some increase in $\Delta c_D/c_L^2$ was indicated at low Reynolds numbers for both test Mach numbers. Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., July 28, 1953. John H. Hilton, Jr. Aeronautical Research Scientist Alu XXIlly Edward B. Palazzo Aeronautical Engineer Approved: John V. Becker Chief of Compressibility Research Division DRY #### wand bein man and damin and - 2. O'Brien, Norman R.: Summary of Wind Tunnel Test Results for the F-102 Airplane at Mach 1.20 in the Coop Wind Tunnel Utilizing a 1/20th Scale Model. Aero Memo A-8-8 (Revision A), Consolidated Vultee Aircraft Corp., Feb. 20, 1952. - 3. Anon: Supersonic Wind Tunnel Tests of an .016 Scale Model of the F-102 Airplane in the NOL 40cm × 40cm Wind Tunnel. Part I: Evaluation of the Preliminary Configuration. Aero Memo A-8-17, Consolidated Vultee Aircraft Corp., May 16, 1952. - 4. Osborne, Robert S., and Kelly, Thomas C.: A Note on the Drag Due to Lift of Delta Wings at Mach Numbers up to 2.0. NACA RM L53Al6a, 1953. ## TABLE I.- DIMENSIONAL DATA FOR A 1/20-SCALE MODEL OF THE CONVAIR MX-1554 AIRPLANE | Wing: | | |---|-----------------| | Area, sq ft Span, in. Mean aerodynamic chord, in. Aspect ratio Root chord, in. Tip chord, in. Airfoil section Angle of incidence, deg Dihedral angle, deg Sweepback of leading edge, deg Sweepforward of trailing edge, deg | 850040)0005 | | Leading-edge radius in percent chord (measured streamwise) 0.18 | 3 | | Vertical tail: Area (exposed), sq in. Span, in. Aspect ratio (panel) Taper ratio Root chord, in. Tip chord, in. Airfoil section Sweepback of leading edge, deg Sweepforward of trailing edge, deg 5 | 7 2 L O + O 1 O | | Fuselage: Length with short symmetrical afterbody, in |)
,
, | C. The Boundary of TABLE II -- LONGITUDINAL PARAMETERS OF THE CONVAIR MX-1554 MODEL AT M = 1.41 AND 2.01 | | | | | | | | | | | Longitudin | al parameters | | | | | | | |---|------------------|------------|-----------|--|---------------------------------------|---|---------------------------------------|---|---|--|--|---|---|---|--|--|--| | Configura | tion | | | | | | M = | 1.41 | | | - | | | M = | 2.01 | | · | | | δe,
deg | δR,
deg | β,
deg | Reynolds
number | $c_{\mathbf{L}_{\alpha}}$ | C ^{mCT} | C _{Dmin} | $\left(^{\mathcal{C}_{\mathrm{L}_{\delta_{e}}}}\right)_{\mathrm{trim}}$ | $\left(\alpha\delta_{e}\right)_{\text{trim}}$ | $\left(c_{m_{\delta_e}}\right)_{\alpha=0^o}$ | Reynolds
number | C.T. | CmCL | C _X min | $\left(^{c_{L_{\delta_e}}}\right)_{\text{trim}}$ | $\left(^{\alpha}\delta_{e}\right)_{\text{trim}}$ | $\left(c_{m_{\delta_e}}\right)_{\alpha=0}$ | | W + B + P + F + N _{ϕ} + C ₇ + VT ₆₀ + D _F + Short symmetrical afterbody | 0
0
0
0 | 0 0 0 0 | 0 0 0 0 0 | 1.37 × 10 ⁶
3.08
4.80
7.02
8.83
4.80 | 0.046
.046
.046
.046
.046 | -0.198
198
198
198
198
202 | 0.022
.022
.022
.022
.022 | -0.011 | -0.3 <u>4</u> | -0.0031 | 1.13 × 10 ⁶
2.55
3.96
5.83
7.27
3.96 | 0.033
.033
.033
.033
.033
.034 | -0.179
179
179
179
179
184 | -0.020
020
020
020
020
025 | -0.007 | -0.29 | -0.0018 | | W + B + P + F + N ₄ + C ₇ + VT ₆₀ + D _F + Elongated symmetrical afterbody | 0
10 | 0 | ; o | 4.80
4.80 | .047
.047 | 209
210 | .022 | ~.012 | 36 | 0034 | 3.96
3.96 | .034
.034 | 192
194 | 020
023 | 007 | 30 | 0019 | | W + B + F + F + N ₁ + C ₇ + VT ₆₀ + D _F + Elongated upswept afterbody | 0 | 0 | 0 | 4.80 | .047 | 210 | .022 | | | | 3.96 | .034 | 192 | 020 | | , | | | W + B + F + N _l + D _F + Short symmetrical afterbody | 0 | | 0 | 4.80 | .046 | | .019 | | | | | | | | | جــــــــــــــــــــــــــــــــــــ | | | "Equivalent-area" body of revolution | | | 0 | 4.80 | | | .019 | | | | | | _ | | | - NA | - مرسر ک | TABLE III.- LATERAL PARAMETERS OF THE CONVAIR MX-1554 MODEL AT M = 1.41 AND 2.01 | | | | | | | | | Lateral | parameters | | | | | |--|-------|-------------------------|--------------------------|----------------------------------|----------------------------|-----------------------------|-----------------------------|---|--|--------------------------------------|------------------------------|----------------------------------|--| | Configuration | | | | <u> </u> | | M = 1.43 | L | | | | M = 2. | 01 | | | | δe, | δ _R ,
deg | a,
deg | Reynolds
number | c _{Y_β} | C _l _β | c _n _β | $\left(\beta\delta_{R}\right)_{C_{\mathbf{n}}=0}$ | Reynolds
number | C _{Y_β} | C, | . с _п | $\left(\beta_{\delta_{\mathbf{R}}}\right)_{\mathbf{C}_{\mathbf{n}}=0}$ | | W + B + P + F + N ₄ + C ₇ + VT ₆₀ + D _F + Short symmetrical afterbody | 00000 | 0
0
0
-15
0 |
3.9
3.9
3.9
3.9 | 4.80 × 10 ⁶ 4.80 4.80 | -0.0089
0091
0093 | -0.0012
0012
0006 | .0011 | -0.3 | 1.13 × 10 ⁶
3.96
7.27
3.96
3.96 | 0069
0074
0074
0074
0081 | 000¼
000¼
000¼
000¼ | .0002
.0003
.0003
.0003 | | | $W + B + P + F + N_{\parallel} + C_{\uparrow} + D_{F} +$
Short symmetrical afterbody | 0 | | 0 | 4.80 | 0020 | .0002 | 001 ⁴ | | 3.96 | 0026 | 0004 | 0013 | | | W + B + P + F + N ₄ + C ₇ + VT ₆₀ + D _F +
Elongated symmetrical afterbody | 0 | 0 | 3.9 | 4.80 | 0089 | 0012 | .0014 | | 3. 96 | 0078 | 0004 | .0005 | | | W + B + P + F + N ₄ + C ₇ + VT ₆₀ + D _F +
Elongated upswept afterbody | ٥ | 0 | 3.9 | 4.80 | 0089 | 0012 | .0013 | | 3.96 | 0078 | 0004 | •0004 | · | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL ## OF THE MX-1554 AIRPLANE | 10000 | М | Configuration | R | a,
deg | β,
deg | C _L | CX | C _m | CZ | Cn | CY | |--|------|--|------------------------|---|---|--|---|--|---|---|--| | Section 1. The section of sectio | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_{\rm e} = 0^{\rm o}$; $\delta_{\rm R} = -15^{\rm o}$ | 4.80 × 10 ⁶ | ٠٠٠) | -4.08
-2.05
03
1.99
4.02
6.05
8.09
10.13
12.18
6.05
.98 | | 036
036
035
035
035
034
033 | 035
035
034
034
033
033
032
034
035 | 0.0033
.0008
0012
0042
0065
0083
0096
0106
0112
0082
0029 | .0031
.0049
.0076
.0099
.0118
.0133
.0143
.0145
.0117 | .008
006
028
047
066
085
106
126 | | h, .c. 150 | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{\circ}$ | 4.80 × 10 ⁶ | -4.30
-2.16
03
2.11
4.24
6.39
8.51
10.64
6.39
04 | 02
0 | 214
114
016
.082
.181
.286
.378
.467
.284
019 | 036
038
027
023
025
034
051
074
104
052
023 | 035
.041
.021
.002
017
037
057
075
093 | 0016
.0002
.0002
0
0
0001
0002
0003
0002 | .0052
.0004
.0003
.0004
.0004
.0004 | 001
.001
.001
001
001
002
003
003 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | M | Configuration | R | a,
deg | β,
deg | $c_{\mathtt{L}}$ | $C_{\mathbf{X}}$ | C _m | Cl | Cn | CY | |------|---|------------------------|--|-----------|---|--|-----------------------------------|----------------------------|----------------------------------|------------------------| | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^0$ | 7.02 × 10 ⁶ | -4.56
-2.26
04
2.16
4.40
6.62
05 | | -0.215
115
014
.083
.192
.292
019 | 027
023
025
035
052 | .020
.001
017
039
058 | 0001
0
0001
0002 | .0004
.0003
.0004
.0004 | 0
001
002
002 | | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{O}$ | 8.83 × 10 ⁶ | -3.48
-2.33
07
2.22
4.53
07 | | 169
116
017
.086
.198
018 | 036 | .021
.002
018
039 | .0001
0
0001
0001 | | 0
0
001
002 | | 1.41 | WBPFN $_{\rm L}^{\rm C}$ 7 $^{\rm VT}$ 60 $^{\rm D}$ F + Short symetrical afterbody $\delta_{\rm e} = \delta_{\rm R} = 0^{\rm O}$ | 1.37 × 10 ⁶ | -4.09
-2.06
01
2.02
4.07
6.10
8.14 | | 210
115
021
.072
.169
.262 | 037
026
022
024
034
048 | .001
016
035
054 | .0002
.0001
0
0 | | 0 | ## TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL ## OF THE MX-1554 AIRPLANE - Continued | M | Configuration | R | α,
deg | β,
deg | $^{\mathrm{C}_{\mathrm{L}}}$ | c _X | $C_{\mathbf{m}}$ | Cl | C _n | CY | |------|--|------------------------|--|-----------|--|---|--|----------------------------------|---|---| | 1.41 | $\begin{array}{c} \text{WBPFN}_{4}\text{C}_{7}\text{VT}_{60}\text{D}_{F} \text{ +} \\ \\ \text{Short symetrical afterbody} \\ \delta_{e} = \delta_{R} = \text{O}^{o} \end{array}$ | 1.37 × 10 ⁶ | 10.18
12.21
6.10
01 | J | 0.439
.524
.257
021 | -0.097
'129
048
022 | 107 | 0 | .0005 | 002 | | 1.41 | $\label{eq:bounds} \begin{array}{l} \text{WBPFN}_4 \text{C}_7 \text{VT}_{60} \text{D}_F + \\ \text{Short symetrical afterbody} \\ \delta_e = \delta_R = \text{O}^\text{O} \end{array}$ | 3.08 × 10 ⁶ | -4.19
-2.10
02
2.07
4.15
6.24
8.32
10.41
12.49
6.23
02 | | 211
110
018
.077
.176
.271
.370
.457
.541
.270
019 | 037
026
022
025
034
050
072
101
135
049
022 | .040
.020
.002
016
036
056
075
091
108
055
002 | 0
0
0
0
0001
0001 | .0004
.0004
.0004
.0005
.0005
.0005
.0005 | 0
001
002
002
002
003
002 | | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{o}$ | 4.80 × 10 ⁶ | -4.22
-2.09
.04
2.17
4.31 | | 260
159
061
.038
.140 | 048
035
029
029
036 | .074
.053
.033
.012
008 | 0001
0001 | .0002
.0003
.0002
.0002
.0003 | .001
.001
0
001 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | α,
deg | β,
deg | | CX | C _m | Cl | $\mathtt{c_n}$ | C _Y | |------|---|------------------------|--|-----------|--|--|---|--|---|--------------------------| | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = -10^\circ$; $\delta_R = 0^\circ$ | 4.80 × 10 ⁶ | 6.45
8.59
10.70
12.82
6.45
.04 | 0 | 0.241
.335
.414
.498
.238 | 072
097
129
050 | | -0.0003
0005
0003
0003
0001
| | 003
003
003
002 | | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody $\delta_e = -10^{\circ}; \ \delta_R = 0^{\circ}$ | | -4.20
-2.08
.06
2.20
4.34
6.49
8.63
10.77
4.34 | 0 | 262
163
065
.038
.141
.244
.338
.431
.138
066 | 035
028
029
036
051
072
100
036 | .079
.057
.037
.015
007
028
047
066
006 | .0001
.0001
0001
0002
0003
0006
0004
0002 | .0003
.0004
.0003
.0004
.0004
.0006
.0006 | | SAM HANNIGE PRENTATION TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | a,
deg | β,
deg | ${ t C_L}$ | CX | C _m | cı | c_n | $\mathtt{c}_{\mathtt{Y}}$ | |------|--|---|--|-----------|---|--|---|----|--|--| | 1.41 | Elongated symetrical afterbody $\delta_e = \delta_R = 0^O$ | • | -2.16
03
2.09
4.24
6.37
8.51
10.62
6.38
03 | | 116
016
.083
.185
.290
.387
.477
.293
014
.185
.185
.185
.184
.181 | 026
022
025
031
075
052
052
033
033
033
031
031
030
032 | .022
.001
019
040
062
082
062
039
039
039
039
038
038
037
037 | | .0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
0029
0001
.0026
.0055
.0079
.0102
.0117
.0125 | 0001001002003003002001017037057057057057057057 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | a,
deg | β,
deg | $C_{\mathbf{L}}$ | $^{\mathrm{C}}\mathrm{X}$ | C _m | Cl | Cn | CY | |------|--|------------------------|---|--|---|--|--|--|----------------------------------|---| | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody $\delta_e = \delta_R = 0^{O}$ | 4.80 × 106 | -4.27
-2.14
01
2.12
4.25
6.38
8.51
10.62
6.38
01 | | -0.221
120
018
.080
.182
.286
.380
.469
.284
022 | 027
022
024
033
050
073
102
050 | .027
.005
015
037
059
078
097
058 | .0005
.0004
.0003
.0004
.0003 | .0009
.0010
.0009
.0010 | 001
002
002
003
003
004
003 | | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody $\delta_e = \delta_R = 0^0$ | 4.80 × 10 ⁶ | 3. 8 | -4.05
-2.03
0
2.02
4.04
6.07
8.11
10.14
12.19
6.07
0 | .179
.181
.179
.176
.175
.168
.162
.153
.173 | 032
032
032
032
031
031
030 | 034
034
033
033
032
034 | .0026
.0000
0024
0047
0065
0078
0087
0093
0064 | .0026
.0052
.0077 | .036
.019
.001
018
037
058
078
099
121
057 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | M | Configuration | | R | α,
deg | β,
deg | $^{\mathrm{C}_{\mathbf{L}}}$ | C _X | C _m | Cl | C _n | CY | |------|---|------|-------------------|-----------|---|--|--|--|--|--|---| | 1.41 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^0$ | | = 106 | 3.8 | -4.05
-2.03
0
2.02
4.05
6.08
8.12
10.15
12.20
6.08 | .182
.181
.179
.178
.174
.171
.164 | 033
033
033
032
032
031
030
032 | 036
036
035
035
035
034
034
035 | .0042
.0022
0003
0028
0052
0069
0084
0093
0069
0003 | 0003
.0018
.0041
.0059
.0072
.0080
.0081 | .019
.001
016
035
054
073
093
114
054 | | 1.41 | WBPFN $_{\rm L}$ C $_{\rm 7}$ VT $_{\rm 60}$ D $_{\rm F}$ + Short symetrical afterbody $\delta_{\rm e}$ = $\delta_{\rm R}$ = 0 $^{\rm O}$ | 4.80 | × 10 ⁶ | 2 | -2.03
0
2.02
4.05
6.07
8.10
10.14
12.19
6.07 | 015
017
018
019
020
024
028
034
021
018 | 022
023
022
022
022
022
021
022 | .003
.003
.003
.003
.003
.003 | | 0027
0004
.0016
.0040
.0063
.0082
.0096
.0103 | .021
.002
016
035
056
076
097
119 | Taraffanel(General)(0.9) TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL OF THE MX-1554 AIRPLANE - Continued | : | М | Configuration | R | α,
deg | β,
deg | СL | СX | Cm | Cl | Cn | CY | |---|------|--|------------------------|---|---|--|---|---|--|--|--| | | 1.41 | WBPFN ₄ C ₇ D _F + Short symetrical afterbody δ _e = 0 ^o | 4.80 × 10 ⁶ | -0.2 | -4.08
-2.04
0
2.04
4.07
6.11
8.16
10.20
12.26
6.11 | 011
013
014
017
021
025 | 021
021
021
021
021
021
021 | .001
.001
0
0
0
0 | 0005
0001
.0004
.0012
.0023
.0036
.0051 | .0026
0
0027
0056
0083
0110
0141
0174
0083 | .005
.001
003
008
013
020
029
039 | | | 1.41 | WBFNμD _F + Short symetrical afterbody $\delta_e = 0^{O}$ | 4.80 × 10 ⁶ | -4.31
-2.18
04
2.10
3.69
6.36
8.50
10.62
4.24
04 | | 208
110
010
.086
.159
.281
.381
.468
.187
012 | 022
028
048
071
100 | 002
021
035
060
080
098
041 | .0003
.0002
.0000
.0001
.0000
0001
.0000 | 0
0
0
.0001
.0001
.0001 | .001
.001
0
0
001
002
002 | ## TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL ## OF THE MX-1554 AIRPLANE - Continued | | М | Configuration | R | a,
deg | β,
deg | $\mathtt{c}_{\mathtt{L}}$ | С _Х | C _m | cı | $\mathtt{C_n}$ | CY | |----|----|--------------------------------------|------------------------|---|-----------|--|---|----------------|--|--|---| | 1. | 41 | "Equivalent-area" body of revolution | 4.80 × 10 ⁶ | -4.09
-2.05
-1.04
01
1.00
2.03
4.05
6.09
8.13
10.17
12.21
6.09
01 | | -0.013
010
009
006
005
002
.001
.005
.011
.018
.026
.005
008 | -0.021
020
020
020
020
020
021
023
025
019 | 1 | 0
0
0
0
0
0
0
0
0
0 | 0.0001
.0001
0
0
0
0001
0002
0002
0004
0001 | 0
0
0
0
0
001
001
001
001 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL OF THE MX-1554 AIRPLANE - Continued | М | Configuration | R | α,
deg | β,
deg | | . C _X | C _m | cı | C _n | CY | |------|--|------------------------|---|-----------|-----|---|--|------------------------------|--|---| | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody $\delta_e = \delta_R = 0^0$ | |
-0.03
-4.25
-2.14
2.08
4.18
6.27
8.36
10.46
12.56
6.27 | | 150 | 032
023
022
029
041
057
078
103 | .022
.008
019
033
046
058
070 | .0004
.0003
.0001
0 | .0001
.0001
.0001
.0001
.0002
.0002 | .002
.001
0
0
0
001 | | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody δ _e = -10 ^o ; δ _R = 0 ^o | 3.96 x 10 ⁶ | 04 | 0.0 | 009 | 020
039
029
024
025
030
041
055
074
098
041 | 005
.041
.028
.014
001
014
027
040
052
064
027 | .0004 | .000100010001 0 0.0001 .0001 .0002 .0002 | .001
.002
.001
.001
.001
0
0
001 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL ## OF THE MX-1554 AIRPLANE - Continued | М | Configuration | | R | α,
deg | | $c_{ m L}$ | CX | C _m | cı | C _n | CY | |------|---|------|-------------------|-----------|--|--|--|--|---|---|--| | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated symetrical afterbody $\delta_e = \delta_R = 0^{\circ}$ | 3.96 | × 10 ⁶ | 3.9 | -4.05
-2.02
0
2.03
4.05
6.08
8.11
10.15
12.19
6.08 | .136
.136
.135
.133
.128
.123
.116 | 029
029
029
029
028
028
028 | 033
032
032
032
031
030
030
029 | 0.0013
.0006
0002
0009
0016
0021
0025
0028
0033
0020 | .0013
.0021
.0027
.0027
.0026
.0022 | 0.031
.015
001
017
032
049
067
086
104
049
001 | | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = 0^{\circ}; \ \delta_R = -15^{\circ}$ | | × 10 ⁶ | 3.9 | -4.07
-2.04
01
2.01
4.04
6.07
8.11
10.14
12.19
6.07
01 | .129
.130
.131
.130
.126
.125
.119
.113
.106 | 030
030
030
031
031
031
030
030 | 029
028
028
028
027
027
026
028 | .0005
0002
0010
0019
0026
0036
0040
0044
0032
0011 | .0034
.0039
.0046
.0047
.0045
.0038
.0032 | | COMPREDENESS TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | α,
deg | β,
deg | cL | C _X | C _m | cl | C _n | CY | |------|--|--------------------------------|--|-----------|---|---|--|---|---|--| | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = -10^\circ$; $\delta_R = 0^\circ$ | 3.96 × 10 ⁶ | -4.23
-2.13
03
2.08
4.18
6.28
8.38
10.48
12.58
6.28
03 | | -0.172
103
032
.041
.108
.173
.236
.300
.359
.172
033 | 024
024
030
040
054
073
097
040 | .026
.013
001
013
025
037
048
059 | .0002
.0001
0
0001
0002
0002 | 0.0001
0
0
0001
0
.0001 | 0
0
001
001 | | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^O$ | 3. 96 × 10 ⁶ | -4.24
-2.14
03
2.08
4.19
6.28
8.38
10.47
12.57
6.28
03 | | 145
077
006
.066
.134
.199
.262
.323
.381
.197
006 | 024
020
022
029
041
057
077
101
041 | .008
005
017
030
042
053 | .0003
.0003
.0001
0
0
0
0
0001 | 0
0
0
0
0
.0001
0
0001 | .003
.002
.002
.001
.001
.001
.001 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL #### OF THE MX-1554 AIRPLANE - Continued | . M | Configuration | R | a,
deg | β,
deg | c_{L} | c _X | C _m | cı | C _n | $\mathtt{c}_{\mathtt{Y}}$ | |------|--|------------------------|---|-----------|--|--|--|----------------------------------|---|---| | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{\circ}$ | i
i | -0.05
-2.21
-4.37
2.13
4.24
6.44
8.59
10.75
12.89
6.43
04 | | -0.006,
079
147
.066
.114
.203
.266
.328
.387
.202
007 | 023
032
022
028
042
058
079 | .008
.020
017
026
043
054
065 | 0
0
0001 | .0001
.0002
.0002
.0002
.0001
.0001
.0002 | .002
.001
.001
.001
0
001
001 | | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{O}$ | 7.27 × 10 ⁶ | 05
-4.48
-2.28
05
2.16
4.36
6.58
8.77
10.96
6.57
05 | | 007
148
080
006
.066
.136
.205
.270
.330
.204
007 | 020
032
023
020
022
029
042
059
042
020 | 004
.020
.008
004
017
030
042
054
065
042 | .0002
.0002
.0001
.0001 | .0001
.0002
.0002
.0002
.0002
.0002 | .002
.001
.001
0
0
001
001
002 | - ASIMPHOLOGENIANOS ## TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | α,
deg | β,
deg | $c_{ m L}$ | c_{X} | C_{m} | Cı | $\mathtt{C_n}$ | CY | |------|---|------------------------|--|-----------|---|---|--|--|---|---------------------------------------| | 2.01 | WBPFN $_{\rm L}$ C $_{\rm 7}$ VT $_{\rm 60}$ D $_{\rm F}$ + Short symetrical afterbody $\delta_{\rm e}$ = $\delta_{\rm R}$ = 0 $^{\rm O}$ | 2.55 x 10 ⁶ | -4.15
-2.09
02
2.05
4.11
6.17
8.24
10.30
12.36
6.17
02 | 0 | -0.139
075
007
.062
.128
.191
.251
.309
.366
.191
007 | 023
019
021
028
039
054
073
096
039 | .008
004
017
029
040
052
062
072
040 | .0002
.0001
.0000
.0000
0001
0003
0001 | .0001
.0002
.0001
.0001
.0001 | .002
.001
.001
0
0
001 | | 2.01 | WBPFN $_{4}$ C $_{7}$ VT $_{60}$ D $_{F}$ + Short symetrical afterbody δ_{e} = δ_{R} = 0 $^{\circ}$ | 1 | -4.08
-2.04
01
2.02
4.05
6.08
8.11
10.14
12.16
6.08
01 | 0 | 139
073
007
.059
.125
.187
.249
.309
.362
.187
007 | 020
022
028
039
054
073
095 | .007
004
016
028
040
051
062
072
040 | .0003
.0000
.0000
0001
0003
0003
0003 | .0003 | 0
0
0
0 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | α,
deg | β,
deg | $c_{\mathbf{L}}$ | c _X | Cm | cı | Cn | CY | |------|--|------------------------|--|--|---|--|--|--|--|--| | 2.01 | WBPFN ₄ C ₇ VT $_{60}$ D _F + Elongated upswept afterbody $\delta_{e} = \delta_{R} = 0^{\circ}$ | 3.96 × 10 ⁶ | -4.23
-2.13
03
2.08
4.18
6.28
8.37
10.47
12.56
6.28
03 | | -0.153
082
010
.061
.130
.195
.259
.323
.380
.195
012 | -0.033
024
020
022
028
040
056
076
100
040
020 | .013
001
015
028
041
053
066
077
041 | .0004
.0003
.0002
.0001
.0001
.0000 | .0004
.0004
.0004
.0004
.0004
.0003 | .001
0 | | 2.01 | WBPFN ₄ C ₇ VT ₆₀ D _F + Elongated
upswept afterbody δ _e = δ _R = 0 ⁰ | 3.96 × 10 ⁶ | 3. 9 | -4.05
-2.02
0
2.03
4.05
6.08
8.11
10.15
12.19
6.08
0 | .127
.129
.129
.128
.125
.122
.117
.111
.104
.122 | 028
028
028
028 | 028
028
027
027
026
026
025
027 | .0008
.0000
0008
0015
0020
0024
0027
0032
0020 | .0013
.0021
.0026
.0027
.0026 | .014
002
017
033
049
067
085
103
049 | TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL OF THE MX-155 AIRPLANE - Continued | M | Configuration | R | a,
deg | β,
deg | ${\tt C_L}$ | C _X | Cm | Cl | Cn | CY | |---|--|-------------------|-----------|--|--|--------------------------|---|---|--|--| | | WBPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^{\circ}$ $WBPFN_4C_7VT_{60}D_F + Short symetrical afterbody$ $\delta_e = \delta_R = 0^{\circ}$ | × 10 ⁶ | | -4.11
-2.05
4.11
6.16
8.23
10.32
12.40
6.16
.01
-4.05
-2.02
2.03
4.06
8.12
10.16
12.20
6.08
0 | .136
.134
.132
.128
.123
.117
.109
.128
.136
.130
.130
.129
.124
.118
.114
.106 | 029
029
028
028 | 030
030
039
029
029
029
030
029
029
029
029
029
028
028
028 | .0007
0002
0016
0022
0026
0030
0034
0022
0001 | .0010
.0013
.0015
.0012
.0005
0005
.0014
.0003
0002
.0002
.0009
.0013
.0015
.0016
0003 | .013
002
017
032
048
064
082
101
047
002
.027
.012
017
033
048
064
082 | ## TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | | α,
deg | β,
deg | $c_{ m L}$ | c_{X} | C _m | ; c _l | $\mathtt{c}_{\mathtt{n}}$ | c _Y | |------|--|--------|-----|-----------|--|---|---|---|------------------|--|--| | 2.01 | WBPFN $_{4}$ C $_{7}$ VT $_{60}$ D $_{F}$ + Short symetrical afterbody $\delta_{e} = \delta_{R} = 0^{0}$ | 1.13 × | 106 | | -4.01
-2.01
0
2.01
4.01
6.02
8.04
10.05
12.06
6.02
0 | .121
.125
.129
.125
.121
.121
.118 | 028
028
028
028
028
028
028 | 028
029
028
028
028
028
028 | | .0005
.0008
.0010
.0011
.0008 | .014
0
014
028
047
063
081
099
047 | | 2.01 | WEPFN ₄ C ₇ VT ₆₀ D _F + Short symetrical afterbody $\delta_e = \delta_R = 0^0$ | 3.96 x | 106 | -•2 | -2.03
0
2.02
4.05
6.07
8.11
10.15
12.19
6.07 | 013
012
013
014
016
020
023
027
017 | 1 | 004
003
003
003
003
004
003 | .0008 | 0008
.0001
.0011
.0020
.0025
.0026
.0025 | .017
.001
015
032
048
066
084
103 | # TABLE IV.- TABULATED COEFFICIENTS FROM TESTS OF A 1/20-SCALE MODEL | М | Configuration | R | de, | | C _L | c _X | - C _m | Cl | c_n | CY | |------|--|----------|-----|---|---------------------------------|--|--------------------------|--|--|---| | 2.01 | WBPFN ₄ C ₇ D _F + Short symetrical afterbody $\delta_e = 0^{\circ}$ | 3.96 x 1 | 06 | 2 -4.07
-2.04
0
2.03
4.07
6.10
8.14
10.19
12.24
6.10 | 009
009
010
012
014 | 020
020
019
020
021
022
023
021 | 005
005
005
005 | 0008
.0000
.0008
.0017
.0028
.0038
.0050 | .0029
.0002
0026
0053
0081
0109
0138
0167
0081 | .006
.001
004
017
026
037
050 | Figure 1.- System of stability axes. Secondaria di T Figure 2.- Three-view sketch of 1/20-scale MX-1554 model. (Dimensions in inches unless noted.) Figure 3.- Side-view sketch of 1/20-scale MX-1554 model afterbodies. L-78008 (a) Short symmetrical afterbody. Figure 4.- Photographs of complete MX-1554 model with different afterbodies. COMPLEMENTANCE L-78007 (b) Elongated symmetrical afterbody. Figure 4.- Continued. L-78009 (c) Elongated upswept afterbody. Figure 4.- Continued. #### THE TANKET ANDO (d) Plan view of short symmetrical afterbody. Figure 4.- Concluded. L-78011 Figure 5.- Area distribution for complete configuration with different afterbodies. Figure 6.- Photograph of the Convair MX-1554 "equivalent-area" body of revolution. L**-**78239 (a) M = 1.41; $R = 4.8 \times 10^6$. Figure 7.- Aerodynamic characteristics in pitch of the Convair MX-1554 model with different afterbodies. (b) M = 2.01; $R = 3.96 \times 10^6$. Figure 7.- Concluded. (a) M = 1.41. Figure 8.- Effect of Reynolds number on the aerodynamic characteristics of the basic configuration (short symmetrical afterbody) of the Convair MX-1554 model in pitch. (b) M = 2.01. Figure 8.- Concluded. Figure 9.- Drag due to lift of the various test configurations at M = 1.41 and 2.01. R = variable. CONTRACTOR Figure 10.- Aerodynamic characteristics in pitch for the MX-1554 and the equivalent-area distribution body of the Convair MX-1554. M=1.41; $R=4.8\times10^6$. - The State of the Land in. | . (a) M = 1.41; $R = 4.8 \times 10^6$. Figure 11.- Aerodynamic characteristics of the basic configuration (short symmetrical afterbody) of the Convair MX-1554 model in sideslip, with and without vertical tail. $\alpha=0^{\circ}$. Commence of the same - O Basic configuration - ☐ Basic configuration less vertical tail (a) Concluded. M = 1.41; $R = 4.8 \times 10^6$. Figure 11.- Continued. (b) M = 2.01; $R = 3.96 \times 10^6$. Figure 11.- Continued. de dede coleme \overline{c} 4 Lift coefficient, CL 7 (a) M = 1.41; $R = 4.8 \times 10^6$. Figure 12.- Aerodynamic characteristics of the Convair MX-1554 model in sideslip with different afterbodies. $\alpha = 4^{\circ}$. - - - Blingpb . ve (a) Concluded. M = 1.41; $R = 4.8 \times 10^6$. Figure 12.- Continued. the state of the state of Afterbody 8_R(deg) ○ Short, symmetrical 0 ○ Short, symmetrical -15 □ Elongated, symmetrical 0 Elongated, upswept 0 (b) $$M = 2.01$$; $R = 3.96 \times 10^6$. Figure 12.- Continued. (b) Concluded. M = 2.01; $R = 3.96 \times 10^6$. Figure 12.- Concluded. ○ R = 1.13 x 10⁶ ○ R = 3.96 x 10⁶ □ R = 7.27 x 10⁶ Figure 13.- Effect of Reynolds number on the aerodynamic characteristics of the basic configuration (short symmetrical afterbody) of the Convair MX-1554 model in sideslip. $\alpha = 4^{\circ}$; M = 2.01. · "我看到一个声概是"** ○ R = 1.13 x 10⁶ ○ R = 3.96 x 10⁶ □ R = 7.27 x 10⁶ Figure 13.- Concluded. - ♦ Co-op WBPN₄ C₁VT₆₀₋₁D_F Reference 2 - Unpublished △ 8'HST WBFPN3CIVT60DF - \Diamond NOL 40x40 cm WBPN₄C₁VT₆₀₋₁D₀ Reference 3 \Diamond NOL 40x40 cm WBPN₄C₁VT₆₀₋₁D_F Figure 14.- Longitudinal parameters of the Convair MX-1554 through the supersonic Mach number range. β = $0^{\circ}\,.$ NACA RM SL53G30 - ♦ 4'SPT WBFPN₄C₇VT₆₀D_F - ☐ Co-op WBPN₄C_IVT_{60-I}D_F Reference 2 - O NOL 40 x 40 cm WBPN₄C₁VT_{60-I}D₀ Reference 3 Figure 15.- Longitudinal control parameters of the Convair MX-1554 model through the supersonic Mach number range. - Reference I - □ 4'SPT WBFPN4C7VT60DF - ☐ 4'SPT WBFPN4C7DF Tail off - Reference 2 - $\begin{array}{cccc} \Diamond & \text{NOL } 40 \times 40 \text{ cm} & \text{WBPN}_4\text{C}_1\text{VT}_{60-1}\text{D}_0 \\ \Diamond & \text{NOL } 40 \times 40 \text{ cm} & \text{WBPN}_4\text{C}_1\text{D}_0 \text{ Tail off} \end{array} \right\} \text{ Reference } 3$ Figure 16.- Lateral parameters of the Convair MX-1554 model through the supersonic Mach number range. NACA RM SL53G30 (b) $\alpha = 4^{\circ}$. Figure 16.- Concluded. SECURITY INFORMATION NASA Technical Library